Duality and the Class of Holomorphic Functions Representable by Carleman’s Formula
نویسندگان
چکیده
The purpose of the present paper is two-fold. The first is to describe the space of continuous functionals for the Smirnov space Ep(U), p ≥ 1, when U is a simply connected, bounded domain with Ahlfors regular boundary in terms of functions which are analytic in the complement U (or dual complement) and have a prescribed boundary behavior on ∂U . As an application of the above results, we give a precise description of the space of continuous functionals acting on the space NH M (U), p ≥ 1 of holomorphic functions representable by Carleman’s formula. Similar results are proven for topological products of bounded simply connected domains with Ahlfors regular boundaries.
منابع مشابه
Duality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملOn the Lower Bound for a Class of Harmonic Functions in the Half Space
The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n ≥ 2. To this end, we first generalize the Carleman’s formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna’s representation for harmonic functions in the half s...
متن کاملUnivalent holomorphic functions with fixed finitely many coefficients involving Salagean operator
By using generalized Salagean differential operator a newclass of univalent holomorphic functions with fixed finitely manycoefficients is defined. Coefficient estimates, extreme points,arithmetic mean, and weighted mean properties are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013